Holymead

KS1 and KS2 Calculation Policy
 February 2018

Stewart McSmythurs

Maths Subject Leader
Audience
Teachers, Parents/Carers, Governors

Rationale

This policy contains the calculation methods that will be taught at Holymead Primary School. It is intended to support every child develop the key skills of mental calculation and written calculation. Workshops will be held regularly to demonstrate methods and to advice parents and carers on how to support their child in mathematics.


```
nicef(%
unicef(3)
```


KS1 (Year 1 and Year 2)

KS2 (Year 3 to Year 6)

Addition	Subtraction	Multiplication	Division
Instant recall of all single digit number facts, includes doubles, bridging ten 7+5 ($7+3+2$ or $\underline{2+5+5}$), near doubles e.g. 6+7 ($6+6+1$) Partitioning Method $\begin{aligned} & 34+15 \\ & 30+10=40 \\ & 4+5=9 \\ & =49 \end{aligned}$ Developing into only partitioning one number $34+15$ $34+10+5$ (Once proficient, this becomes a mental calculation strategy) Column addition without carrying Column addition with carrying (using equipment in year $3 \& 4$) $\begin{array}{r} 36 \\ +47 \\ \hline 83 \\ \hline 1 \end{array}$ Saying that the carried number is 1 ten Progressing to column addition of money, decimals and larger numbers.	Instant recall of all single digit subtraction facts e.g. 8-5 = 3 (see KS1 strategy) Counting back / recall subtraction fact mentally e.g. 15-3 (count back from 15 to 12 , or recall $5-3=2$, therefore $15-3=12$). Bridging (crossing) a ten mentally e.g. 15-9 $=6$ (count up from 9 up to 15 or find difference by counting back 15-5-1). Counting up on a number line to find complements to multiples of 10 or 100 e.g. $£ 1-56$ p By partitioning a number e.g. 13-5 Either: a) 13-3-2 (partitioned the 5) b) $(10-5)+3$ (partitioned 13 into 10 and 3 , subtract 5 from 10) Column Subtraction without exchanging Pupils must subtract the ones first Column subtraction with exchanging in any column - e.g. exchanging hundreds and tens and ones. Using apparatus in year $3 \& 4$. Using a number line to calculate differences: time, differences between positive and negative numbers.	Recall of times tables up to 12×12 by the end of Year 4 Partitioning Method 16×3 $10 \times 3=30$ $6 \times 3=18$ 30+18=48 Compact Column Method $\begin{array}{r} 72 \\ \times \quad 3 \\ \hline 216 \\ \hline \end{array}$ Compact Column method for TU.t x U $\begin{gathered} 21.8 \\ \times \quad 3 \\ \hline 65.4 \\ \hline 2 \end{gathered}$ Long multiplication TU x TU $\begin{array}{r} 32 \\ \times 15 \\ \hline 1_{1} 60 \\ 320 \\ \hline 480 \\ \hline \end{array}$ Derive times tables to support division e.g. 16 times tables by using doubles, halves, x10, x5 etc. Double / halving method 16×5 is the same as 8×10 (Half of 16 , but double 5) Recall factor pairs of two digit numbers e.g. 24 1 and 24,2 and 12,3 and 8,4 and 6	Recall of division facts based on times tables e.g. $21 \div 3=7$. This is progressing onto to a number line: How many groups of 3 in 17 ? e.g. $17 \div 3=5$ r 2 Use a bar model to show division or fraction: $60 \div 3$ or $\frac{1}{3}$ of 60 $$ Long division In year 4, pupils use place value counters with the long division method to divide by single digits. In years 5 and 6 pupils then progress to using the "Divide, Multiply, Subtract, Bring Down" strategy with arrows. Pupils support their calculation by jotting down multiples of the divisor (as seen on the right) Once fluent with the long division method, pupils can then use the 'compact' method to divide by one digit. $\begin{array}{l\|l\|} & 1 \\ \hline & 4 \\ \cline { 2 - 3 } & 4{ }^{12} 2 \end{array}$ Write the remainder as a fraction or decimal.

